3.6.74 \(\int \frac {1}{x^{5/2} \sqrt {a+b x}} \, dx\) [574]

Optimal. Leaf size=44 \[ -\frac {2 \sqrt {a+b x}}{3 a x^{3/2}}+\frac {4 b \sqrt {a+b x}}{3 a^2 \sqrt {x}} \]

[Out]

-2/3*(b*x+a)^(1/2)/a/x^(3/2)+4/3*b*(b*x+a)^(1/2)/a^2/x^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {47, 37} \begin {gather*} \frac {4 b \sqrt {a+b x}}{3 a^2 \sqrt {x}}-\frac {2 \sqrt {a+b x}}{3 a x^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^(5/2)*Sqrt[a + b*x]),x]

[Out]

(-2*Sqrt[a + b*x])/(3*a*x^(3/2)) + (4*b*Sqrt[a + b*x])/(3*a^2*Sqrt[x])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*(Simplify[m + n + 2]/((b*c - a*d)*(m + 1))), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rubi steps

\begin {align*} \int \frac {1}{x^{5/2} \sqrt {a+b x}} \, dx &=-\frac {2 \sqrt {a+b x}}{3 a x^{3/2}}-\frac {(2 b) \int \frac {1}{x^{3/2} \sqrt {a+b x}} \, dx}{3 a}\\ &=-\frac {2 \sqrt {a+b x}}{3 a x^{3/2}}+\frac {4 b \sqrt {a+b x}}{3 a^2 \sqrt {x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 27, normalized size = 0.61 \begin {gather*} -\frac {2 (a-2 b x) \sqrt {a+b x}}{3 a^2 x^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(5/2)*Sqrt[a + b*x]),x]

[Out]

(-2*(a - 2*b*x)*Sqrt[a + b*x])/(3*a^2*x^(3/2))

________________________________________________________________________________________

Mathics [A]
time = 2.79, size = 33, normalized size = 0.75 \begin {gather*} \frac {2 \sqrt {b} \left (-a+2 b x\right ) \sqrt {\frac {a+b x}{b x}}}{3 a^2 x} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

mathics('Integrate[1/(x^(5/2)*Sqrt[a + b*x]),x]')

[Out]

2 Sqrt[b] (-a + 2 b x) Sqrt[(a + b x) / (b x)] / (3 a ^ 2 x)

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 33, normalized size = 0.75

method result size
gosper \(-\frac {2 \sqrt {b x +a}\, \left (-2 b x +a \right )}{3 x^{\frac {3}{2}} a^{2}}\) \(22\)
risch \(-\frac {2 \sqrt {b x +a}\, \left (-2 b x +a \right )}{3 x^{\frac {3}{2}} a^{2}}\) \(22\)
default \(-\frac {2 \sqrt {b x +a}}{3 a \,x^{\frac {3}{2}}}+\frac {4 b \sqrt {b x +a}}{3 a^{2} \sqrt {x}}\) \(33\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(5/2)/(b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*(b*x+a)^(1/2)/a/x^(3/2)+4/3*b*(b*x+a)^(1/2)/a^2/x^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.25, size = 31, normalized size = 0.70 \begin {gather*} \frac {2 \, {\left (\frac {3 \, \sqrt {b x + a} b}{\sqrt {x}} - \frac {{\left (b x + a\right )}^{\frac {3}{2}}}{x^{\frac {3}{2}}}\right )}}{3 \, a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

2/3*(3*sqrt(b*x + a)*b/sqrt(x) - (b*x + a)^(3/2)/x^(3/2))/a^2

________________________________________________________________________________________

Fricas [A]
time = 0.31, size = 23, normalized size = 0.52 \begin {gather*} \frac {2 \, {\left (2 \, b x - a\right )} \sqrt {b x + a}}{3 \, a^{2} x^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

2/3*(2*b*x - a)*sqrt(b*x + a)/(a^2*x^(3/2))

________________________________________________________________________________________

Sympy [A]
time = 1.14, size = 42, normalized size = 0.95 \begin {gather*} - \frac {2 \sqrt {b} \sqrt {\frac {a}{b x} + 1}}{3 a x} + \frac {4 b^{\frac {3}{2}} \sqrt {\frac {a}{b x} + 1}}{3 a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(5/2)/(b*x+a)**(1/2),x)

[Out]

-2*sqrt(b)*sqrt(a/(b*x) + 1)/(3*a*x) + 4*b**(3/2)*sqrt(a/(b*x) + 1)/(3*a**2)

________________________________________________________________________________________

Giac [A]
time = 0.00, size = 72, normalized size = 1.64 \begin {gather*} -\frac {32 \sqrt {b} b \left (-3 \left (\sqrt {a+b x}-\sqrt {b} \sqrt {x}\right )^{2}+a\right )}{2\cdot 6 \left (\left (\sqrt {a+b x}-\sqrt {b} \sqrt {x}\right )^{2}-a\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(b*x+a)^(1/2),x)

[Out]

8/3*(3*(sqrt(b)*sqrt(x) - sqrt(b*x + a))^2 - a)*b^(3/2)/((sqrt(b)*sqrt(x) - sqrt(b*x + a))^2 - a)^3

________________________________________________________________________________________

Mupad [B]
time = 0.34, size = 25, normalized size = 0.57 \begin {gather*} -\frac {\left (\frac {2}{3\,a}-\frac {4\,b\,x}{3\,a^2}\right )\,\sqrt {a+b\,x}}{x^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(5/2)*(a + b*x)^(1/2)),x)

[Out]

-((2/(3*a) - (4*b*x)/(3*a^2))*(a + b*x)^(1/2))/x^(3/2)

________________________________________________________________________________________